5 Must-Knows for Your First Flex PCB Design

by | Feb 11, 2020 | 1 comment

Flex PCB design requires a slightly different approach than rigid PCBs. While flex PCBs can provide major savings in manufacturing cost as well as reduced space consumption and lower weight compared with rigid, their design must be optimized for their materials and use cases. A well-designed flex PCB will be lightweight, durable, easy to install, and suitable for demanding applications such as wearable devices and satellites. Indeed, the physical advantages for flex is that it offers an improved resistance to vibrations and movement, and it is easier to prepare for harsh environments.

The Flex PCB Design Must-Knows

There are plenty of ways to ensure a high-quality flex PCB design. Let’s look at five things you should know going into your first attempt at flex PCB:

1) Understand bendability of your flex PCB.

It is vital to know two things in relation to bend: how many times it will be bending, and what it can bend. The amount of times it can bend, or application, determines whether the board will be a static or dynamic board. A static board is considered bend-to-install, and will flex less than 100 times in its lifetime. A dynamic board’s design needs to be more robust in nature, as flexing will be done on a regular basis—and will need to withstand tens of thousands of bends.

Bend radius—the minimum amount of bendiness for the flex area—must be properly identified early in the design. This ensures your design can allow for the necessary number of bends without damaging the copper. The figure below will help determine how thick you can make your circuit. Calculating bend radius can be done based on how many layers are in the flex PCB, as explained in our Flex Design Guide.

Flex Thicknesses Table

When laying out the bend areas, avoid 90-degree bends that cause high strain. Plated through-holes should be avoided in the bend area, conductors should be staggered in multilayered circuits (for greater effectiveness), and conductors smaller than 10 mils should be placed within the neutral bend axis where there is no tension or compression during flexing.

Heat-Forming Flex PCBs

Heat-forming requires a steel jig, as it forces the board to lie a certain way. The steel jig is then inserted into an oven. One of the benefits of heat-forming is the tighter bend radius it provides. However, heat-forming is used primarily for ease-of-installation; tighter bend radius just happens to be one of the additional capabilities it provides.

Cutouts And Slots In The Bend Region

If there are no traces in the bend region, the bend radius can be minimized through the insertion of cutouts, or slots. Using cutouts will reduce the amount of material required to bend. Another option is removing sections of the flex where there is no circuitry, although this must be removed lengthwise and will require routing afterward.

Better DFM by Sierra Circuits

2) Know your flex PCB materials.

Flex PCBs usually require looser outline tolerance than other boards. This is because their materials have less dimensional stability than rigid ones. Depending on the profile tolerance, you may also require a hard tool or laser cutting, which can be expensive.

Also, note that flex PCB materials may contain acrylic adhesives. Since these chemicals can become soft when heated, it is important to make your pads as large as possible. Using spurs, anchors, and/or teardrops in your design can help stabilize the outer layer and reduce stress. Multi-layer designs are also a way around adhesive issues.

Flex PCB Sierra Circuits

“Curved traces cause lower stress than angled ones.”

3) Keep an eye on flex trace routing.

Circuitry layout makes or breaks a PCB. Going back to the bend radius, a large radius is preferable here to the sharp angles that shorten a board’s lifespan. Moreover, it is best to avoid I-beaming so as to minimize the stress that can thin out copper circuits.

Curved traces cause lower stress than angled ones. Traces should also be kept perpendicular to the overall bend and, if placed on a flex PCB with two or more layers, staggered on the top and bottom.

Flex PCB Sierra Circuits

“Putting flex layers on the inside of the stack-up provides protection from exposure to outer-layer plating. “

4) Place the flex layers in the center of the stack-up.

For rigid-flex PCBs, Sierra processes the flex layer as a two-layer board, laminates it between the rigid layers, and mills it so the flex is visible. Putting flex layers on the inside of the stack-up provides protection from exposure to outer-layer plating. This placement also simplifies manufacturing and improves impedance and control in the flex area.

The flex layer can be etched away from the design as part of a separate process, allowing for more protection. Below is a mini-case study.

Flex PCB Design Case Study: 

The Issues:

The original stackup given to Sierra Circuits by a customer.

The original stack-up given to Sierra Circuits by a customer.

The Solution:

We embedded the flex layers in the center of the stack-up. This protected the layers during the manufacturing process and ensured that the less-durable flex layers were not exposed to outer-layer plating. This is how most rigid-flex stack-ups are designed. When the flex layers are on the outside, panels are harder to handle and harder to process. This made the board more durable and easier to manufacture. It also allowed for better impedance and better control around the flex finger area.

Because the flex layer is a separate process, putting the flex layers inside allows flex manufacturers the ability to etch away from the design while protecting the flex layers. Putting the rigid material on the outside also allows us to manufacture what is essentially a rigid panel. The flex layers are also protected by our surface plating because it should brittle the material. The material used also played a large part in making this board rigid-flex instead of flex. Rigid AP material was used, allowing for better impedance and reliability. It was a much better option than the original FR-4 material.

Sierra Circuits’ rigid-flex manufacturing process is as follows: first, we process the flex layer as a two-layer flex board. Then we laminate the flex layers in between the rigid layers. The last step is milling the layers so the flex becomes visible.

Flex PCB Design Stack-Up

Sierra Circuits’s flex stack-up.

5) Mitigate risk in flex vias.

It is possible for vias to crack or break peel flex PCB designs. To prevent them from doing so, make sure that vias are tear-dropped, that anchors and or tabs are added, and that the annular rings are as large as possible.

These are just a few sample flex PCB designs and tips. For more, be sure to check out our in-depth Flex Design Guide!

Flex design guide Sierra Circuits


Choose Your Flex PCB Manufacturer

When it comes to flex, you have to choose the right manufacturer. Make sure that the PCB shop you pick produces flex circuit boards on a regular basis: the more they do, the more they master flex. Do not hesitate to ask about the materials they are used to work with, what their surface finishes are, etc.

Flex PCB Sierra Circuits

Come and see for yourself how we manufacture flex PCBs!

It is even better to visit your PCB manufacturer and see their capabilities for yourself. If you come at Sierra, we will give you a “behind-the-scenes” tour of our facilities in Sunnyvale, CA. You will learn all you need to know about our manufacturing and assembly process.


Check our flex capabilities and call us or chat with us!


1 Comment

  1. Avatar

    It’s very straightforward to find out any matter on nnet as
    compared to textbooks, ass I found this paragraph at this webb site.


Submit a Comment

Your email address will not be published.