Skip to main content
Sierra Circuits
Best-in-Class PCB Fabrication, Assembly, & Components.
Industry Leading PCB Designer's Tools.

Speak to an Account Manager Telephone +1 (800) 763-7503

Quote Now
How To PCBPCB Design

Choosing IPC Class for Medical Flex PCBs

Flex PCBs are widely used in medical devices and wearables as they offer some great advantages. The demand for fitness wearables and medical devices is expected to increase even more in the upcoming years. Choosing an appropriate flex PCB manufacturing class is essential to ensure all the necessary requirements are met.


Author headshot: Amit Bahl

By Amit Bahl

February 16, 2021  |  0 Comments

Flex PCBs are widely used in medical devices and wearables as they offer some great advantages. The demand for fitness wearables and medical devices is expected to increase even more in the upcoming years. Choosing an appropriate flex PCB manufacturing class is essential to ensure all the necessary requirements are met.

Before we talk about flex medical PCBs, let us have a look at the standard IPC classes

Three IPC classes

The different manufacturing classes for PCBs were established by IPC, the trade association devoted to connecting electronics industries. The higher the quality standard, the higher the classification.

IPC class 1

Class 1 PCBs are classified as general electronic products.

IPC class 2

Class 2 flex PCBs are used in electronic products, such as cameras and smartphones.

IPC class 3

Class 3 PCBs are used in high-reliability electronic parts. This category includes any item in which the devices require 100% reliability and accuracy at all times. For example, medical applications generally use class 3 flex PCBs.

To understand the difference between class 2 and class 3 standards, read our article IPC Class 2 VS Class 3: The Different Design Rules.

 

IPC Class 3 Design Guide - Cover Image

IPC Class 3 Design Guide

8 Chapters - 23 Pages - 35 Minute Read
What's Inside:
  • IPC guidelines for manufacturing defects
  • IPC standards for assembly processes
  • Common differences between the classes
  • IPC documents to set the level of acceptance criteria

 

 

Copper plating guidelines for medical flex PCBs

As a PCB manufacturer or designer, it is important to know the difference between class 2 and class 3.  Most of the time, even if the end product only requires class 1, class 2 PCBs are produced to ensure better performance. Void standards are among the biggest differences between classes. In the further sections, we will have a look at the standards for copper plating voids and surface finish coating voids.

Plating copper through-holes or vias are necessary for multi-layer or double-sided PCBs. Class 3 PCBs cannot have any evidence of voids in copper plating holes. For class 2, a single void in any hole is acceptable as long as no more than 5 percent of holes have voids. No void is more than 5 percent of the hole length, and the void is less than 90 degrees of the circumference.

Also read, what is conformal coating?

Class 3 flex PCBs copper plating standards

  • No voids are allowed in copper plating holes of class 3 PCB.
Copper plating class 3 flex PCB
Copper plating standard for class 3 PCB

Class 2 flex PCBs copper plating standards

  • No more than one void in any hole
  • Not more than 5% of the holes should have voids
  • Any void should not exceed 5% of the hole length
Copper plating class 2 flex PCBs
Copper plating standards for class 2 flex PCBs

To know more about flex PCB design, read our article 5 Must-Knows for Your First Flex PCB Design.

Better DFM by Sierra Circuits

Flex PCB surface finish guidelines

There are similar stipulations when it comes to the surface finish coating.

  • Class 3 boards cannot have more than one void per hole, no more than 5 percent of holes can have voids, and the void cannot be more than 5 percent of the hole length.
  • For class 2, three voids per hole are acceptable, but all of the other requirements remain the same.
  • Class 1 boards are acceptable if they have five voids or fewer in any hole, 15 percent or fewer of the holes have voids, and no void is more than 10 percent of the hole length. For all three classes, the voids cannot be more than 90 degrees of the circumference.

These relatively small distinctions determine not just the classification of circuit boards, but also their reliability and capabilities. It should also be noted that flex PCBs that are used in medical devices should be manufactured as per the IPC class 3 standards. To ensure that a given circuit design meets the right qualification, it’s imperative that designers choose the right manufacturing class with the help of a reputable manufacturer that can deliver reliable products. In this article, we have studied the manufacturing class of medical PCBs. Let us know in the comment section if there are any specific topics that you would like to read more about.

To learn more about flex design guidelines, watch our webinar Flex PCB Design Guidelines for Manufacturing.

 

Flex PCB Design Guide - Cover Image

Flex PCB Design Guide

10 Chapters - 39 Pages - 45 Minute Read
What's Inside:
  • Calculating the bend radius
  • Annular ring and via specifications
  • Build your flex stack-up
  • Controlled impedance for flex
  • The fab and drawing requirements
Subscribe
Notify of
guest
0 Comments
Inline Feedbacks
View all comments
Share this article
Zero Defects guaranteed on all PCB fabrication

Reduce Re-Spins with our Zero Defect Guarantee.

Our platform sources the whole package, creating a thread from design to delivery. Fabricating PCBs. Procuring parts. Assembling your boards.

Once you upload your BOM, Our best-in-class software automatically checks for errors and cleans your file for you. After you place an order, your dedicated CAM engineer will run a full DFM and DFA check to ensure your prototype achieves Zero Defect every time—all at no additional cost to you.

Get to market faster and spend less time troubleshooting.

Start Quote

Talk to a Sierra Circuits PCB Expert today

24 hours a day, 7 days a week.

Call us: +1 (800) 763-7503
Email us: through our Customer Care form