NASA Case Study

Sensor-Web Instruments Are Linked

NASA Airborne Science operates a fleet of aircraft in conjunction with orbiting satellites for Earth observations. In 2004, NASA started planning missions to employ constellations of instruments flying on those platforms that would mutually interact and communicate as a network with stations on the ground. These sensor webs would simultaneously collect data from multiple perspectives to better describe hurricanes, polar ice conditions, and other geophysical dynamics. Data from various spectra and locations could be correlated in real time to form detailed composites of events in progress.

The new EIP supports all the legacy data protocols of existing instruments, but the primary data interface for new payloads is an aircraft’s payload Ethernet network. Each EIP incorporates an Ethernet switch with four 1000BASE-T and eight 10/100BBASE-T ports available to instruments.

NASA aircraft had for decades collected atmospheric and terrestrial information for a wide range of Earth science research conducted by universities, companies, and government agencies such as the National Oceanic and Atmospheric Administration (NOAA). Pilots switched on the instruments, the data were acquired, and the recordings were unloaded and analyzed after the aircraft landed. To standardize instrument connections to the ER-2 high-altitude aircraft, NASA created the Mark I Experimenter Interface Panel (EIP) in the 1990s, which provided power to the payloads and a link to a pilot-operated switch panel. That EIP was largely a harness pass-through with a small printed circuit board that carried low-level relays for the cockpit switch panel. It simplified the engineering required to deploy instruments to the ER-2, and was later installed on the WB-57 aircraft.

Click to download and continue reading this case study.

Tags: ,

Leave a Reply

Your email address will not be published.